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Abstract—  Residential energy management is a critical area of research aimed at promoting economical and sustainable energy 

use. Traditional methods often underutilize energy storage systems (ESS) and struggle to keep up with the dynamic nature of 

household energy consumption. This study addresses these challenges by proposing a novel solution that integrates reinforcement 

learning (RL) techniques with Internet of Things (IoT) technology to enhance the efficiency of residential ESS. IoT facilitat es 

real-time data acquisition, while RL has shown potential in optimizing complex decision-making tasks. The synergy between these 
technologies creates a modern energy management system tailored to the needs of households. Energy optimization can be 

personalized and more efficient through RL, which leverages historical data and adapts to e volving conditions. The integration of 

IoT enables real-time system responsiveness to fluctuations in energy demand and supply. This research demonstrates the practical 

application of intelligent, adaptive energy management systems in residential settings, offering valuable insights into the future of 

flexible energy solutions. 

 

I. INTRODUCTION 

Recent advancements in communication technologies and 

the deployment of smart metering infrastructures have 

enabled users to interact with their home energy management 

(HEM) systems in real-time. This allows them to schedule 

energy consumption and engage in demand response (DR) 

strategies. DR, which balances energy supply and demand, 

enables users to adjust flexib le o r “elastic” loads to optimize 

their consumption patterns and reduce energy costs, 

especially under variable pricing schemes. In recent studies, 

various methodologies have been proposed to enhance the 

effectiveness of HEM systems from a demand-side 

perspective. For instance, hierarchical energy management 

models for home microgrids incorporate day-ahead and 

real-t ime planning stages, integrating renewable sources like 

photovoltaic (PV) energy. By optimizing schedules for 

energy resources, these systems can min imize both daily  

electricity expenses and penalties associated with peak 

energy consumption. Other HEM models integrate storage 

solutions, such as plug-in electric vehicles (PEVs ), provid ing 

additional flexib ility in energy usage and enabling the system 

to respond dynamically to fluctuating energy demands. Some 

approaches in HEM also prioritize user comfort by 

considering consumer satisfaction when adjusting appliance 

operations, while systems equipped with heating, ventilation, 

and air conditioning (HVAC) facilit ies optimize thermal 

comfort and cost efficiency over extended time horizons. 

Multi-energy and multi-time models have been developed, 

and formulated as non-linear quadratic p rogramming 

problems to manage the diverse and temporal energy needs of 

buildings effectively. Furthermore, some research efforts 

focus on developing computationally efficient HEM models 

by employing approximate dynamic p rogramming 

techniques, which utilize temporal difference learn ing for 

efficient scheduling of distributed energy resources. Another 

line of research has exp lored DR solutions that apply 

chance-constrained programming combined with particle 

swarm optimization to  create reliable and adaptable energy 

schedules that maintain both economic efficiency and system 

resilience. However, the majority of existing HEM 

approaches depend on centralized optimization, which  

assumes perfect predict ive accuracy of future uncertainties. 

This assumption, while helpful in idealized models, may not 

hold in real-world applications due to forecasting errors and 

the need to process large numbers of binary o r integer 

variables, lead ing to high computational costs and limit ing 

the scalability of these methods. Recently, reinforcement 

learning (RL) has emerged as a promising alternative due to 

its adaptability and decision-making capabilities without the 

need for extensive prior knowledge. Unlike trad itional 

optimization, RL-based approaches can dynamically adjust 

to changing conditions, offering a more practical solution for 

real-t ime energy management. As smart home devices 

proliferate and energy storage systems become more 

common, the need for sophisticated energy regulation has 

intensified. The increasing complexity of managing both 

renewable energy sources and conventional power requires 

flexib le and autonomous frameworks. In response, this work 

proposes an innovative Deep Reinforcement Learn ing 

(DRL)-based framework using the Asynchronous Advantage 

Actor-Critic (A3C) algorithm to optimize energy 

consumption in  smart homes. A3C, a state-of-the-art RL 

approach, excels in dynamic and distributed environments by 

enabling parallel learning across mult iple agents. This 

framework accounts for key factors such as electricity 

pricing, user comfort, and energy storage constraints, 

continuously learning and adjusting to meet the unique and 

fluctuating energy needs of a smart residential environment. 
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By leverag ing the A3C arch itecture, the proposed system 

optimizes policy and value functions simultaneously, 

enhancing the system’s ability to predict  and respond to 

real-t ime changes in energy demand. The asynchronous 

nature of A3C allows for faster convergence and greater 

robustness in scenarios with high variability. Unlike 

traditional models, this approach enables more effective 

utilizat ion of sequential data, improving both the accuracy 

and adaptability of energy management strategies. 

Collectively, these advancements underscore the 

transformative potential of A3C-based DRL in managing 

smart home energy, pointing toward  a future of enhanced 

efficiency, cost savings, and sustainability in residential 

energy use. 

II. RELATED WORK 

Recent advancements in real-t ime energy management in  

smart homes have introduced various optimizat ion 

approaches leveraging Deep Reinforcement Learning (DRL). 

Multi-Agent Deep Reinforcement Learning (MADRL) 

frameworks have proven particularly  effect ive in balancing 

trade-offs between energy costs and user comfort, enhancing 

energy efficiency across various benchmarks [1]. 

Wei et al. (2023) proposed a framework using Proximal 

Policy Optimization (PPO) for optimizing smart home 

energy consumption, considering user comfort and the 

operation of devices such as photovoltaics and energy storage 

systems [2]. Another study by Afroosheh et al. (2024) 

combined a unique layout-based reinforcement learn ing 

strategy with deep learning for temperature forecasting, 

achieving a notable 12% reduction in energy costs [3]. 

Load scheduling using DRL has demonstrated significant  

reductions in energy consumption. For instance, 

Deanseekeaw et al. (2024) ut ilized the Advantage 

Actor-Critic (A2C) method under Time-of-Use tariffs, 

achieving remarkable energy savings [4]. Additionally, 

Zenginis et al. (2022) employed clustering combined with the 

Deep Deterministic Po licy Gradient (DDPG) algorithm to 

optimize energy scheduling, achieving improved efficiency 

compared to single-agent methods [5]. Zenginis (2021) 

further exp lored reinforcement learn ing to minimize 

electricity costs without heavy reliance on forecasts, 

showcasing its effectiveness under nonlinear conditions [6]. 

The integration of Internet of Things (IoT)-powered  

systems has also enhanced energy consumption monitoring 

and optimization in s mart  homes. For example, Raj et al. 

(2024) analyzed real-t ime data to improve energy 

management [7]. Pokorn et al. (2023) p roposed a DRL-based 

energy trading system that reduced costs by nearly 48% 

compared to conventional methods, demonstrating the 

effectiveness of intelligent trading in energy management 

[8]. 

Tai et al. (2019) developed a demand-side management  

system using deep Q-learning that considers user preferences 

and appliance usage, improving both cost efficiency and 

comfort [9]. Meanwhile, Gao et al. (2022) introduced a 

federated deep reinforcement learning framework that 

reduces standby energy consumption without rely ing on 

cloud services, effectively addressing privacy concerns [10]. 

Various algorithms have also been adopted to manage 

residential HVAC systems efficiently. McKee et al. (2020) 

applied a DRL approach that achieved nearly a 44% 

reduction in energy costs [11]. Similarly, Lissa et al. (2021) 

demonstrated that a DRL- controlled home energy system 

could optimize indoor and domestic hot water temperatures, 

achieving savings of around 8% compared to rule-based 

methods [12]. 

These studies collectively highlight the growing potential 

of DRL-based approaches in smart home energy 

management. They emphasize the importance of designing 

adaptive frameworks capable of reducing overall energy 

usage by at least 25% compared to traditional fixed-schedule 

systems. Furthermore, evaluating the performance of such 

frameworks under various occupancy scenarios and 

environmental conditions ensures they can adaptively 

manage energy consumption while maintaining comfort  

levels across diverse household settings. 

III. PROPOSED METHODOLOGY 

Reinforcement Learning Background Reinforcement  

Learn ing (RL) is a robust machine learning technique 

designed to address complex decision-making challenges in 

uncertain environments, such as energy management. It  

operates by enabling an agent to learn through trial and error, 

receiving feedback in the form of rewards for its actions. 

Over time, the agent refines its behavior to develop an 

optimal policy aimed at maximizing these rewards. This 

characteristic makes RL particularly well-suited for dynamic  

optimization problems where environmental conditions are 

unpredictable. 

In the context of energy management, RL has been 

employed to optimize residential energy storage systems 

(ESS) by leverag ing historical data, including energy 

consumption trends, weather patterns, and user behavior. The 

adaptability of RL-based models allows them to respond 

effectively to changing conditions, making them highly  

efficient fo r managing energy usage. Unlike trad itional 

methods that depend on precise models of uncertainty, RL is 

capable of handling real-time fluctuations and dynamically  

adjusting energy strategies accordingly. 

A. Asynchronous Reinforcement Learning Framework 

Asynchronous reinforcement learning frameworks enable 

multip le RL agents to interact with the environment in  

parallel, independently updating their policies or value 

functions. This parallelization enhances learning efficiency 

by allowing agents to explore diverse reg ions of the state 
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space simultaneously. In energy management systems, these 

agents can oversee distinct components, such as battery 

storage, solar energy integration, and demand response. 

The asynchronous framework addresses computational 

challenges by avoiding the bottlenecks commonly associated 

with synchronous systems, leading to faster convergence. 

This approach is particularly advantageous in complex, 

multi- component systems like s mart  home energy 

management. 

B. Key Components of Asynchronous RL in Energy 

Management 

• Multiple Agents: 

Each agent is assigned a specific energy-related task, such 

as managing batteries, balancing loads, or d istributing solar 

energy. 

• Parallel Environment Interaction: 

Agents interact with separate copies of the environment, 

gathering experiences and updating their policies 

independently. 

• Centralized Policy Updates: Periodically, agents 

share their collected experiences with a central model, 

which updates a global policy or value function. This 

ensures that all agents benefit from the cumulat ive 

learning across the system. 

• Real-time Data Integration: Agents receive 

continuous input from IoT devices, such as energy 

consumption data, weather conditions, and occupancy 

informat ion. This real-time data facilitates timely and 

accurate decision-making. 

• Adaptation to Dynamic Environments: The 

framework allows the system to adapt seamlessly to 

fluctuations in energy supply and demand, maintaining 

optimal performance in non-stationary and dynamic 

environments. 

 
Figure 1. Block diagram of the proposed HEMS 

Calculation of Energy Savings: The system 

evaluates the energy savings achieved through the 

optimization efforts of the RL model and the energy 

distribution and management component. 

Feedback Loop: 

The results of the decisions made by the RL model are fed  

back into the model, enabling it to learn from its performance 

and refine future actions. 

 
Figure 2. System Architecture 

IV. ABOUT DATASET 

Actor (Policy Network): The role of the actor is to select 

actions based on the current state. Within the Proximal Po licy  

Optimization (PPO) framework, the actor strives to 

maximize the expected cumulative reward by adjusting the 

policy πθ\pi_\theta, which represents the probability of taking 

action aa in state ss. 

Critic (Value Network): The crit ic's ro le is to estimate 

the value of the current state using the value function 

Vω(s)V_\omega(s). This function aids the actor in improving 

its decision-making process by evaluating the quality of a 

given state or action. The critic  helps reduce variance during 

the learning process, enhancing the overall stability of the 

model. 

A. System Components 

1. Smart Home Energy Usage Dataset: This dataset 

serves as the primary source of in formation  and 

includes data on appliance usage, energy 

consumption, and external conditions  collected by 

IoT devices in a smart home environment. 

2. IoT devices: These devices are deployed in the smart  

home to gather data on appliance usage, energy 

consumption, and external factors such as 

temperature and humidity. 

3. Data Processing Unit (DPU): The DPU processes 

and analyzes the raw data co llected by IoT devices, 

preparing it  for further use in decision-making and 

optimization. 

4. Reinforcement Learning (RL) Model: The RL 

model uses the processed data from the DPU to make 

decisions. It learns from the outcomes of its actions to 

improve future decision-making. 

5. Energy Storage System (ESS): This component 

stores surplus energy for later use, contributing to the 

optimization of energy distribution and overall 
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management. 

6. Energy Distribution and Management: This 

module handles the allocation of energy to various 

appliances and external sources based on the 

decisions made by the RL model, ensuring efficient 

usage. 

Defining temporal intervals is essential for identifying  

energy consumption patterns over time. For example, peak 

demand periods can be detected and used to adaptively adjust 

appliance operations or temperature settings. In 

reinforcement learn ing (RL) frameworks such as Proximal 

Policy Optimization (PPO) or Deep Determin istic Policy  

Gradient (DDPG), this temporal data can be a crucial input 

for the state, enabling the agent to determine optimal actions 

(e.g., reducing energy usage during peak hours). 

1. home_id: 

This unique identifier for each smart  home allows the 

model to recognize household-specific patterns. In 

multi-agent scenarios like Mult i-Agent Deep Reinforcement 

Learn ing (MADRL), different agents (one per household) 

can collaborate to improve energy efficiency across a group 

of homes. This identifier is also vital for transfer learning, 

enabling models trained in one household to adapt effectively 

to another. 

2. energy_consumption_kWh: 

This variable, representing energy consumption in  

kilowatt- hours, is the primary  target for optimizat ion in  

energy management. The RL agent aims  to minimize this 

metric while ensuring occupant comfort  (e.g., maintain ing 

suitable temperatures or regulating appliance usage). 

Algorithms like PPO and DDPG use this data to refine 

actions for promoting energy efficiency in real-time. 

3. temperature_setting_C: 

Temperature settings are critical for managing heating, 

ventilation, and air conditioning (HVAC) systems. Accurate 

forecasting and regulation of these settings significantly 

impact energy consumption. An attention-based mechanism 

can prioritize this data if it is a key driver of energy usage, 

ensuring efficient HVAC system management. 

4. occupancy_status: 

Whether a home is occupied or vacant plays a significant  

role in energy conservation. Measures like lowering 

thermostat settings or turning off appliances can be 

implemented when the home is unoccupied. Models with 

attention-driven mechanisms can use this status for real-t ime 

decisions to adjust energy consumption. 

 

5. Appliance: 

Identifying appliances in use (e.g., HVAC systems, 

washing machines) enables targeted energy-saving strategies. 

HVAC systems, for instance, typically consume more energy 

than smaller appliances. In MADRL systems, each appliance 

can function as an independent agent, working collect ively to 

optimize overall energy use. 

6. usage_duration_minutes: 

The duration of appliance usage provides insights into total 

energy consumption and recurring patterns. Extended usage 

of certain appliances may indicate inefficiencies needing 

optimization. RL agents can use this feature to determine the 

best times to shut down appliances or reduce their intensity. 

7. season: 

Seasonal variations significantly affect energy  

consumption, particularly for HVAC systems. For example, 

winter or summer months may see higher usage. Transfer 

learning can help adapt models trained for one season to 

perform well in another, enhancing predictions and energy 

regulation throughout the year. 

8. day_of_week: 

Patterns of energy consumption often differ between  

weekdays and weekends. This feature helps the model adjust 

settings, such as reducing energy use during weekdays when 

homes may be unoccupied. Meta-learning can assist in 

quickly adapting to these cyclical patterns. 

 

Thread-Specific Parameters 

For each actor-learner thread: 

1. Initialize Environment: 

Initialize the thread-specific environment. 

Initialize thread-specific parameters θ′\theta' and v′v'. 

2. Execution Loop: 

While T<TmaxT < T_{\text{max}}: 

• Synchronize Parameters: 

θ′←θ\theta' \gets \theta v′←vv' \gets v 

• Environment Reset and Initialization: 

Reset the environment. Initialize state: 

state=reset environment()\text{state 
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} = \text{reset environment()}. 

Initialize local counters and gradients: 

t←0t \gets 0, Δθ←0\Delta\theta 

\gets 0, Δv←0\Delta v \gets 0. 

3. Local Episode Steps: 

Repeat for each step of the local episode: 

• Action Selection: 

Select action using the policy network: 

action∼π(state;θ′)\text{action} \sim \pi(\text{state}; \theta'). 

• Environment Interaction: 

Perform the action in the environment and observe the 

reward  and next state: 

next_state,reward=perform_action(action)\text{next\_state}, 

\text{reward} = \text{perform\_action}(\text{action}). 

• Experience Accumulation: 

Store the experience: (state, action, reward)(\text{state}, 

\text{action}, \text{reward}). 

• Counter Increment: 

t←t+1t \gets t + 1, T←T+1T \gets T + 1. 

4. Compute Discounted Return RR: 

If next_state\text{next\_state} is terminal: 

R←0R \gets 0. 

Else: 

R←V(next_state;v′)R \gets V(\text{next\_state}; v'). 

For each step in reverse order (from t−1t-1 to 00): 

R←reward+γ⋅RR \gets \text{reward} + \gamma \cdot R. 

• Actor-Network Gradient Accumulation: 

Δθ←Δθ+∇θ′logπ(action∣state;θ′)⋅(R−V(state;v′))\Delta\th

eta 

\gets \Delta\theta + \nabla_{\theta'} \log \pi(\text{action} | 

\text{state}; \theta') \cdot (R - V(\text{state}; v')). 

• Critic Network Gradient Accumulation:  

Δv←Δv+(R−V(state;v′))2\Delta v \gets \Delta v + (R - 

V(\text{state}; v'))^2. 

5. Asynchronous Global Update: 

Update global parameters using accumulated gradients: 

θ←θ+learning_rate_actor⋅Δθ\theta \gets \theta + 

\text{learning\_rate\_actor} \cdot \Delta\theta. 

v←v+learning_rate_critic⋅Δvv \gets v + 

\text{learning\_rate\_critic} \cdot \Delta v. 

6. State Transition: 

Set state←next_state\text{state} \gets \text{next\_state}. 

 

B. Mathematical Equations and Framework Description 

Initialization 

• The global shared actor-network and critic network 

(parameters θv) are initialized. 

• A global counter T is set to 000. 

• Each actor-learner thread maintains thread-specific 

copies of the parameters θ′ and θv′. 

Thread-Specific Learning 

• Each actor-learner thread operates independently. 

• It init ializes its environment and synchronizes its 

local parameters θ′ and θv′ with the global parameters 

θ and θv 

• This ensures the thread learns from the global state 

while exploring diverse parts of the state space. 

Action Selection 

• Actions are selected using the actor-network, 

representing the policy π(at)\ π (at∣st; θ′). 

• The policy is stochastic, enabling explorat ion by 

sampling actions based on their probabilities under 

π\piπ. 

One-Step Update 

• For each action, the agent receives a reward rtr and 

transitions to the next state st+1. 

• The advantage function A(st, at) measures the 

relative value of the taken action: 

 
The discounted return Rt is computed as:f 
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V. RESULTS AND DISCUSSION 

The proposed model is a Home Energy Management 

System (HEMS) that integrates Reinforcement Learning  

(RL) methodologies with the Internet of Things (IoT) to 

enhance residential energy management. 

A. Critical Components: 

IoT Devices: 

• Collect real-t ime metrics on energy utilization, 

demand, and supply. 

• Examples: Smart meters, energy storage solutions, 

renewable energy generators. 

Reinforcement Learning (RL) Model: 

• Optimizes energy management strategies based on 

real-time data collected by IoT devices. 

• Learns from historical datasets and adapts to evolving 

conditions. 

User Preferences: 

• Incorporates user preferences and comfort levels. 

• Customizes optimal strategies to suit the unique 

needs and lifestyles of household occupants. 

Model Objectives: 

• Achieve efficient and personalized energy 

optimization through IoT devices and RL techniques. 

• Utilize real-time information from IoT devices for 

rapid responses to fluctuations in energy demand and 

supply. 

 
Figure 3. Episode Rewards 

Adjust the RL model to novel conditions and 

refine energy management strategies using 

historical data. 

 

 
Figure 4. Energy saving 

Reward Analysis (Fig:3) 

• X-Axis: Number of episodes (1 to 200). 

• Y-Axis: Total rewards obtained in each episode. 

Observations: 

Rewards fluctuate significantly over time, indicating  

inconsistent agent performance across episodes. Potential 

causes of variability include: The balance between 

exploration and exploitation during learning. Environmental 

changes impacting reward accumulat ion. Instabilities in  the 

learning process. 

Energy Savings (Fig:4) 

• X-Axis: Number of episodes (1 to 200). 

• Y-Axis: Energy savings, measured as a 

percentage (%). 

Observations: 

Energy savings vary, with values both above and below 

zero. X-axis : Episode number, Y-axis : Energy savings (%) 

The variability in savings reflects the agent’s trade-off 

decisions in optimizing energy use over time. 

 
Figure 5. Comfort Level 

• X-Axis: Number of episodes (1 to 200). 

• Y-Axis: Comfort  levels, likely on a scale o f 0 to 1.  
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Observations: 

Comfort levels fluctuate but remain within the expected 

range (0 to 1). This metric likely measures how well the agent 

maintains an optimal environmental state (e.g., temperature, 

air quality). 

 
Figure 6. All levels 

1. Average Reward: Value: 0.77 Interpretation: The 

agent achieved an average reward of 0.77 over the 

episodes, indicating satisfactory performance in  

balancing energy savings and comfort. 

2. Average Energy Savings: Value:44.35% 

Interpretation: The system ach ieved an average energy  

saving of 44.35% reflect ing efficient energy 

optimization across episodes. 

3. Average Comfort Level: Value:0.53 Interpretation: 

The system maintained a moderate comfort level 

while saving energy, indicating room for improvement  

in balancing user comfort and energy efficiency. 

 
Figure 7. Hyperparameters  

 
Figure 8. Final results  

VI. EVALUATION METRICS 

A. Average Reward 

Description: Reflects the mean reward obtained by the 

agent throughout all episodes. 

Significance: A higher average reward suggests that the 

agent is optimizing its objectives, which likely include 

balancing energy savings and occupant comfort. Value: 0.77. 

B. Average Energy Savings 

Description: Indicates the average percentage of energy  

conserved by the agent over all episodes. 

Significance: A greater value signifies improved 

performance in energy management. Value: 44.35%. 

C. Average Comfort Level 

Description: Assesses the mean comfort level maintained  

by the agent throughout all episodes. 

Significance: A  higher value signifies effective occupant 

comfort management. Value: 0.53. 

VII. CONCLUSION 

We introduced asynchronous variants of standard 

reinforcement  learning algorithms and demonstrated their 

effectiveness in training neural network controllers across 

highly stable domains. Achieved an average energy savings 

of 44.35%, surpassing the project's target of 25%. 

Demonstrated significant improvement over traditional 

fixed-schedule systems. The average reward of 0.77 reflects 

consistent performance across episodes. The mean comfort  

level of 0.53 indicates a reasonable trade-off between energy 

efficiency and occupant satisfaction. Comfort  levels 

fluctuated, reflecting adaptive responses to varying 

circumstances. Learning Stability: The reward graph 

suggested that the reinforcement learn ing algorithm 

improved decision-making  over time. Energy Sav ing 

Variability: Energy savings remained positive in most 

episodes, with occasional spikes. Improvement Potential: 

Reducing fluctuations in comfort  levels is a priority for future 

optimization. Adjustments to the reward  function or more 

sophisticated algorithms could enhance balance and stability. 

Broader Implications: This framework successfully 

demonstrates the suitability of artificial intelligence-based 

systems for energy conservation in smart homes. Despite the 

unpredictable nature of residential energy needs, the model 

achieved remarkable results in optimizing energy usage. 

VIII. FUTURE WORK 

Future studies could focus on: 

1. Scaling up the balance between comfort and energy 

savings through reward function tuning. 

2. Experimenting with advanced algorithms to  

minimize fluctuations in the comfort graph. 

3. Exploring diverse real-world scenarios for broader 

applicability. 

This research represents an essential step forward in  

energy management for smart homes, underscoring the 

transformative potential of AI-powered systems. 
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